Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Prediction of hydraulic conductivity loss from relative water loss: new insights into water storage of tree stems and branches.

Identifieur interne : 000764 ( Main/Exploration ); précédent : 000763; suivant : 000765

Prediction of hydraulic conductivity loss from relative water loss: new insights into water storage of tree stems and branches.

Auteurs : Sabine Rosner [Autriche] ; Berthold Heinze [Autriche] ; Tadeja Savi [Autriche] ; Guillermina Dalla-Salda [Argentine]

Source :

RBID : pubmed:29923608

Descripteurs français

English descriptors

Abstract

More frequently occurring, drought waves call for a deeper understanding of tree hydraulics and fast and easily applicable methods to measure drought stress. The aim of this study was to establish empirical relationships between the percent loss of hydraulic conductivity (PLC) and the relative water loss (RWL) in woody stem axes with different P50 , i.e. the water potential (Ψ) that causes 50% conductivity loss. Branches and saplings of temperate conifer (Picea abies, Larix decidua) and angiosperm species (Acer campestre, Fagus sylvatica, Populus x canescens, Populus tremula, Sorbus torminalis) and trunk wood of mature P. abies trees were analyzed. P50 was calculated from hydraulic measurements following bench top dehydration or air injection. RWL and PLC were fitted by linear, quadratic or cubic equations. Species- or age-specific RWLs at P50 varied between 10 and 25% and P88 , the Ψ that causes 88% conductivity loss, between 18 and 44%. P50 was predicted from the relationship between Ψ and the RWL. The predictive quality for P50 across species was almost 1:1 (r2  = 0.99). The approach presented allows thus reliable and fast prediction of PLC from RWL. Branches and saplings with high hydraulic vulnerability tended to have lower RWLs at P50 and at P88 . The results are discussed with regard to the different water storage capacities in sapwood and survival strategies under drought stress. Potential applications are screening trees for drought sensitivity and a fast interpretation of diurnal, seasonal or drought induced changes in xylem water content upon their impact on conductivity loss.

DOI: 10.1111/ppl.12790
PubMed: 29923608
PubMed Central: PMC7379737


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Prediction of hydraulic conductivity loss from relative water loss: new insights into water storage of tree stems and branches.</title>
<author>
<name sortKey="Rosner, Sabine" sort="Rosner, Sabine" uniqKey="Rosner S" first="Sabine" last="Rosner">Sabine Rosner</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Botany, BOKU University Vienna, Gregor Mendel Straße 33, 1180, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Institute of Botany, BOKU University Vienna, Gregor Mendel Straße 33, 1180, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Heinze, Berthold" sort="Heinze, Berthold" uniqKey="Heinze B" first="Berthold" last="Heinze">Berthold Heinze</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Seckendorff-Gudent-Weg 8, 1130, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Seckendorff-Gudent-Weg 8, 1130, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Savi, Tadeja" sort="Savi, Tadeja" uniqKey="Savi T" first="Tadeja" last="Savi">Tadeja Savi</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Botany, BOKU University Vienna, Gregor Mendel Straße 33, 1180, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Institute of Botany, BOKU University Vienna, Gregor Mendel Straße 33, 1180, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Viticulture and Pomology, BOKU University Vienna, Konrad Lorenz-Straβe 24, 3430 Tulln an der Donau, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Division of Viticulture and Pomology, BOKU University Vienna, Konrad Lorenz-Straβe 24, 3430 Tulln an der Donau</wicri:regionArea>
<wicri:noRegion>3430 Tulln an der Donau</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dalla Salda, Guillermina" sort="Dalla Salda, Guillermina" uniqKey="Dalla Salda G" first="Guillermina" last="Dalla-Salda">Guillermina Dalla-Salda</name>
<affiliation wicri:level="1">
<nlm:affiliation>INTA, EEA Bariloche, Grupo de Ecología Forestal, San Carlos de Bariloche, Río Negro, Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>INTA, EEA Bariloche, Grupo de Ecología Forestal, San Carlos de Bariloche, Río Negro</wicri:regionArea>
<wicri:noRegion>Río Negro</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:29923608</idno>
<idno type="pmid">29923608</idno>
<idno type="doi">10.1111/ppl.12790</idno>
<idno type="pmc">PMC7379737</idno>
<idno type="wicri:Area/Main/Corpus">000D83</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D83</idno>
<idno type="wicri:Area/Main/Curation">000D83</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D83</idno>
<idno type="wicri:Area/Main/Exploration">000D83</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Prediction of hydraulic conductivity loss from relative water loss: new insights into water storage of tree stems and branches.</title>
<author>
<name sortKey="Rosner, Sabine" sort="Rosner, Sabine" uniqKey="Rosner S" first="Sabine" last="Rosner">Sabine Rosner</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Botany, BOKU University Vienna, Gregor Mendel Straße 33, 1180, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Institute of Botany, BOKU University Vienna, Gregor Mendel Straße 33, 1180, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Heinze, Berthold" sort="Heinze, Berthold" uniqKey="Heinze B" first="Berthold" last="Heinze">Berthold Heinze</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Seckendorff-Gudent-Weg 8, 1130, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Seckendorff-Gudent-Weg 8, 1130, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Savi, Tadeja" sort="Savi, Tadeja" uniqKey="Savi T" first="Tadeja" last="Savi">Tadeja Savi</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Botany, BOKU University Vienna, Gregor Mendel Straße 33, 1180, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Institute of Botany, BOKU University Vienna, Gregor Mendel Straße 33, 1180, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Viticulture and Pomology, BOKU University Vienna, Konrad Lorenz-Straβe 24, 3430 Tulln an der Donau, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Division of Viticulture and Pomology, BOKU University Vienna, Konrad Lorenz-Straβe 24, 3430 Tulln an der Donau</wicri:regionArea>
<wicri:noRegion>3430 Tulln an der Donau</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dalla Salda, Guillermina" sort="Dalla Salda, Guillermina" uniqKey="Dalla Salda G" first="Guillermina" last="Dalla-Salda">Guillermina Dalla-Salda</name>
<affiliation wicri:level="1">
<nlm:affiliation>INTA, EEA Bariloche, Grupo de Ecología Forestal, San Carlos de Bariloche, Río Negro, Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>INTA, EEA Bariloche, Grupo de Ecología Forestal, San Carlos de Bariloche, Río Negro</wicri:regionArea>
<wicri:noRegion>Río Negro</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Physiologia plantarum</title>
<idno type="eISSN">1399-3054</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Droughts (MeSH)</term>
<term>Magnoliopsida (metabolism)</term>
<term>Magnoliopsida (physiology)</term>
<term>Plant Stems (metabolism)</term>
<term>Plant Stems (physiology)</term>
<term>Tracheophyta (metabolism)</term>
<term>Tracheophyta (physiology)</term>
<term>Trees (metabolism)</term>
<term>Trees (physiology)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (métabolisme)</term>
<term>Arbres (physiologie)</term>
<term>Eau (métabolisme)</term>
<term>Magnoliopsida (métabolisme)</term>
<term>Magnoliopsida (physiologie)</term>
<term>Sécheresses (MeSH)</term>
<term>Tiges de plante (métabolisme)</term>
<term>Tiges de plante (physiologie)</term>
<term>Tracheobionta (métabolisme)</term>
<term>Tracheobionta (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Magnoliopsida</term>
<term>Plant Stems</term>
<term>Tracheophyta</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arbres</term>
<term>Eau</term>
<term>Magnoliopsida</term>
<term>Tiges de plante</term>
<term>Tracheobionta</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Magnoliopsida</term>
<term>Tiges de plante</term>
<term>Tracheobionta</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Magnoliopsida</term>
<term>Plant Stems</term>
<term>Tracheophyta</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">More frequently occurring, drought waves call for a deeper understanding of tree hydraulics and fast and easily applicable methods to measure drought stress. The aim of this study was to establish empirical relationships between the percent loss of hydraulic conductivity (PLC) and the relative water loss (RWL) in woody stem axes with different P
<sub>50</sub>
, i.e. the water potential (Ψ) that causes 50% conductivity loss. Branches and saplings of temperate conifer (Picea abies, Larix decidua) and angiosperm species (Acer campestre, Fagus sylvatica, Populus x canescens, Populus tremula, Sorbus torminalis) and trunk wood of mature P. abies trees were analyzed. P
<sub>50</sub>
was calculated from hydraulic measurements following bench top dehydration or air injection. RWL and PLC were fitted by linear, quadratic or cubic equations. Species- or age-specific RWLs at P
<sub>50</sub>
varied between 10 and 25% and P
<sub>88</sub>
, the Ψ that causes 88% conductivity loss, between 18 and 44%. P
<sub>50</sub>
was predicted from the relationship between Ψ and the RWL. The predictive quality for P
<sub>50</sub>
across species was almost 1:1 (r
<sup>2</sup>
 = 0.99). The approach presented allows thus reliable and fast prediction of PLC from RWL. Branches and saplings with high hydraulic vulnerability tended to have lower RWLs at P
<sub>50</sub>
and at P
<sub>88</sub>
. The results are discussed with regard to the different water storage capacities in sapwood and survival strategies under drought stress. Potential applications are screening trees for drought sensitivity and a fast interpretation of diurnal, seasonal or drought induced changes in xylem water content upon their impact on conductivity loss.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29923608</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>04</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1399-3054</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>165</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2019</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Physiologia plantarum</Title>
<ISOAbbreviation>Physiol Plant</ISOAbbreviation>
</Journal>
<ArticleTitle>Prediction of hydraulic conductivity loss from relative water loss: new insights into water storage of tree stems and branches.</ArticleTitle>
<Pagination>
<MedlinePgn>843-854</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/ppl.12790</ELocationID>
<Abstract>
<AbstractText>More frequently occurring, drought waves call for a deeper understanding of tree hydraulics and fast and easily applicable methods to measure drought stress. The aim of this study was to establish empirical relationships between the percent loss of hydraulic conductivity (PLC) and the relative water loss (RWL) in woody stem axes with different P
<sub>50</sub>
, i.e. the water potential (Ψ) that causes 50% conductivity loss. Branches and saplings of temperate conifer (Picea abies, Larix decidua) and angiosperm species (Acer campestre, Fagus sylvatica, Populus x canescens, Populus tremula, Sorbus torminalis) and trunk wood of mature P. abies trees were analyzed. P
<sub>50</sub>
was calculated from hydraulic measurements following bench top dehydration or air injection. RWL and PLC were fitted by linear, quadratic or cubic equations. Species- or age-specific RWLs at P
<sub>50</sub>
varied between 10 and 25% and P
<sub>88</sub>
, the Ψ that causes 88% conductivity loss, between 18 and 44%. P
<sub>50</sub>
was predicted from the relationship between Ψ and the RWL. The predictive quality for P
<sub>50</sub>
across species was almost 1:1 (r
<sup>2</sup>
 = 0.99). The approach presented allows thus reliable and fast prediction of PLC from RWL. Branches and saplings with high hydraulic vulnerability tended to have lower RWLs at P
<sub>50</sub>
and at P
<sub>88</sub>
. The results are discussed with regard to the different water storage capacities in sapwood and survival strategies under drought stress. Potential applications are screening trees for drought sensitivity and a fast interpretation of diurnal, seasonal or drought induced changes in xylem water content upon their impact on conductivity loss.</AbstractText>
<CopyrightInformation>© 2018 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rosner</LastName>
<ForeName>Sabine</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-1708-096X</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Botany, BOKU University Vienna, Gregor Mendel Straße 33, 1180, Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Heinze</LastName>
<ForeName>Berthold</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Seckendorff-Gudent-Weg 8, 1130, Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Savi</LastName>
<ForeName>Tadeja</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-7585-763X</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Botany, BOKU University Vienna, Gregor Mendel Straße 33, 1180, Vienna, Austria.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Division of Viticulture and Pomology, BOKU University Vienna, Konrad Lorenz-Straβe 24, 3430 Tulln an der Donau, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dalla-Salda</LastName>
<ForeName>Guillermina</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>INTA, EEA Bariloche, Grupo de Ecología Forestal, San Carlos de Bariloche, Río Negro, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>645654</GrantID>
<Agency>European Union's Horizon 2020 (Marie Skłodowska-Curie)</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Denmark</Country>
<MedlineTA>Physiol Plant</MedlineTA>
<NlmUniqueID>1256322</NlmUniqueID>
<ISSNLinking>0031-9317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019684" MajorTopicYN="N">Magnoliopsida</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064028" MajorTopicYN="N">Tracheophyta</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>06</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>06</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29923608</ArticleId>
<ArticleId IdType="doi">10.1111/ppl.12790</ArticleId>
<ArticleId IdType="pmc">PMC7379737</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2005 Oct;168(1):25-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16159318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jun 09;7:831</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27375672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2018 Jul 1;38(7):1016-1025</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29474679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jan;32(1):10-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19076529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>For Ecol Manage. 2004 Aug;197(1-3):49-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18677413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(2):355-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24661229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Feb;22(2-3):91-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11830406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(12):3157-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16882643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Nov 29;491(7426):752-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23172141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(1):105-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Jan;205(1):116-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25229841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1990 Oct;182(3):420-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24197194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2001 Feb;126(4):457-461</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2015 Apr;35(4):400-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25030935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Jan;167(1):40-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25378693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Feb;125(2):779-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11161035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2014 Mar;34(3):275-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24550089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jan;29(1):26-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17086750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Feb;30(2):236-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17238914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Nov;172(3):1657-1668</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27613852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(4):787-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17504462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 May;37(5):1171-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24289816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Jan;217(1):117-126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28940305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Feb;213(3):1093-1106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27870064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Nov;30(11):1448-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2016 Jun;25(11):2482-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26880192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 Apr;23(6):387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12642240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1088-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20841451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Apr;34(4):643-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21309793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jun;194(4):982-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22448870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Oct;39(10):2342-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27093688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2014 Nov;152(3):465-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24611594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Nov;18(11):777-784</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2017 Jun;40(6):897-913</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27861981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Nov;64(15):4779-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23888067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Jul 1;139(3):280-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20210873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2016 Jun;36(6):756-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27083523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Aug-Sep;18(8_9):589-593</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(3):675-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19309447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jan;209(1):123-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26378984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Oct;184(2):353-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19674333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Apr 22;6:266</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25954292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AoB Plants. 2016 Mar 23;8:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26903487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Dec;204(4):747-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25250668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2015 Jul;35(7):694-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26116926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2017 Aug;40(8):1379-1391</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28152583</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Argentine</li>
<li>Autriche</li>
</country>
<region>
<li>Vienne (Autriche)</li>
</region>
<settlement>
<li>Vienne (Autriche)</li>
</settlement>
</list>
<tree>
<country name="Autriche">
<region name="Vienne (Autriche)">
<name sortKey="Rosner, Sabine" sort="Rosner, Sabine" uniqKey="Rosner S" first="Sabine" last="Rosner">Sabine Rosner</name>
</region>
<name sortKey="Heinze, Berthold" sort="Heinze, Berthold" uniqKey="Heinze B" first="Berthold" last="Heinze">Berthold Heinze</name>
<name sortKey="Savi, Tadeja" sort="Savi, Tadeja" uniqKey="Savi T" first="Tadeja" last="Savi">Tadeja Savi</name>
<name sortKey="Savi, Tadeja" sort="Savi, Tadeja" uniqKey="Savi T" first="Tadeja" last="Savi">Tadeja Savi</name>
</country>
<country name="Argentine">
<noRegion>
<name sortKey="Dalla Salda, Guillermina" sort="Dalla Salda, Guillermina" uniqKey="Dalla Salda G" first="Guillermina" last="Dalla-Salda">Guillermina Dalla-Salda</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000764 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000764 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29923608
   |texte=   Prediction of hydraulic conductivity loss from relative water loss: new insights into water storage of tree stems and branches.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29923608" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020